۲- پیک­های بین سمبلی[۴۵]: پیک­های بین سمبلی به پیک­هایی اتلاق می­ شود که در زمانی بیش از طول یک سمبل دیده می­شوند.
۳- پیک­های ناشی از باند محافظ: این پیک­ها در زمان باند محافظ یا همان Tu (Tu=T- ∆) رخ می­ دهند.
همان طور که بیان شد پیک­های اضافی تابع ابهام را به ساختار تکرار شونده پایلوت­ها نیز نسبت می­ دهند. توان بیش­تر پایلوت­ها نیز عاملی کمکی برای پیدایش و تقویت این پیک­های اضافی می­باشد. با این دیدگاه که پیک­های درون سمبلی مربوط به ساختارهای تکرار شونده درون یک سمبل OFDM و پیک­های بین سمبلی مربوط به ساختارهای تکرار شونده بین سمبل­های مجاور هستند حضور پیک­های اضافی در تابع ابهام DVB-T را می­توان به صورت زیر توجیه کرد.

(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))

پیک­های درون سمبلی به علت وجود پایلوت­های پراکنده (در یک سمبل) که چیدمانی با ریتم منظم در هر سمبل OFDM دارند، پدیدار می­شوند. می­دانیم که پایلوت­های پراکنده در هر سمبل در فاصله ۱۲ زیرحامل از یکدیگر قرار دارند. وجود پایلوت­های پیوسته که مکان­هایی یکسان و مشخص در هر سمبل دارند ساختاری تکرار شونده بین سمبل­های مجاور ایجاد می­ کند که این دلیلی بر پیدایش پیک­های بین سمبلی است. علت دیگر پیدایش پیک­های بین سمبلی به مکان قرار گرفتن پایلوت­های پراکنده در سمبل­های مجاور بر می­گردد. همان طور که گفته شد پایلوت­های پراکنده متناظر در دو سمبل مجاور در یک فریم به اندازه ۳ زیرحامل با یکدیگر فاصله دارند و از آن­جایی که فاصله بین این پایلوت­ها در هر سمبل برابر ۱۲ زیرحامل می باشد، مکان پایلوت­های پراکنده با دوره تناوب ۴ سمبل در هر فریم یکسان خواهد شد، یعنی در یک فریم شماره ۱ زیرحامل­های حاوی پایلوت­های پراکنده در سمبل شماره ۱ و ۵ و ۹ و … یکسان می­باشد. این نحوه چیدمان ساختاری تکرار شونده بین سمبل­ها ایجاد می­ کند که باعث تولید پیک­های بین سمبلی در تابع ابهام می­ شود [۱۴-۱۵]. شکل شماره ۲-۱۶ تابع ابهام دوبعدی (بر حسب زمان) سیگنال DVB-T و پیک­های اضافی آن را نشان می­دهد.
شکل ۲-۱۶: تابع ابهام در حالت دوبعدی بر حسب زمان
وجود این پیک­های اضافی در هنگام کشف اهداف ایجاد مشکل می­ کند و ممکن است به عنوان هدف کاذب شناسایی شود و یا ممکن است اهداف در زیر این پیک­ها مدفون شده و کشف نشوند به همین دلیل حذف این پیک­ها از تابع ابهام مسئله­ای مهم به­نظر می­رسد [۳۳]. روشی که برای حذف این پیک­ها اعمال می­ شود مطابق بلوک دیاگرامی به شرح زیر است[۱۵].

شکل ۲-۱۷: بلوک دیاگرام حذف پیک­های اضافی در سیگنالینگ DVB-T
همان طور که بیان شد وجود این پیک­های اضافی به ساختار تکرارشونده پایلوت­ها و توان بیش­تر آن­ها باز می­گردد در نتیجه برای حذف این پیک­ها باید تلاش کرد تا بر این ساختار تکرارشونده و توان بیش­تر آن­ها در گیرنده غلبه کرد. برای غلبه بر توان بیش­تر پایلوت­ها کافیست با انجام اکوالایزینگ توان آن­ها را کاهش داد. مطابق این بلوک دیاگرام در دو مرحله می­توان پیک­های مزاحم را تا حد قابل قبولی حذف نمود. در مرحله اول با blank کردن پایلوت­های پیوسته (صفر کردن پایلوت­ها) پیک­های ناشی از پایلوت­های پیوسته حذف می­شوند و در مرحله بعدی با اکوالایز کردن پایلوت­های پراکنده (توان آن­ها را از ۹/۱۶ به ۱۶/۹ می­رسانیم) پیک­های ناشی از پایلوت­های پراکنده حذف می­شوند. برای حذف پیک­های ناشی از باند محافظ که در زمان Tu رخ می­دهد کافیست سطح سیگنال دریافتی را در زمانی معادل زمان باند محافظ به سطح صفر رساند (blanking). نکته­ای که باید به آن توجه کرد این است که درست است balnk کردن باند محافظ پیک اضافی موجود در زمان باند محافظ را حذف می­ شود اما پیکی دیگر در زمان صفر تولید می­ کند. در شکل شماره ۲-۱۸ تابع ابهام سیگنال DVB-T پس از حذف پیک­های اضافی نشان داده شده است [۱۴].

شکل ۲-۱۸-الف: حذف پیک­های بین سمبلی از تابع ابهام

شکل ۲-۱۸-ب: حذف پیک­های درون سمبلی از تابع ابهام

شکل ۲-۱۸-ج: حذف تمام پیک­های اضافی از تابع ابهام
۳- معرفی روش­های وفقی حذف تداخل در رادارهای پسیو مبتنی بر سیگنال DVB-T و چگونگی آشکارسازی هدف در آن­ها
۳-۱- مقدمه
می­دانیم که رادارهای پسیو شامل دو کانال مرجع و مراقبت جهت جمع­آوری داده ­ها هستند. کانال مرجع بعد از انجام پردازش­های اولیه شامل سیگنال مرجع و نویز می­باشد. در کانال مراقبت رادار­های پسیو علاوه بر سیگنال اهداف مورد نظر برای آشکارسازی، نویز و سیگنال­های مزاحمی مانند سیگنال مسیرمستقیم و سیگنال ناشی از کلاتر (سیگنال چند مسیرگی) نیز حضور دارند. سیگنال­های دریافتی در دو کانال مراقبت و مرجع در شکل زیر نشان داده شده است. (فرستنده FM در نظر گرفته شده است که البته در کلیت موضوع تفاوتی ایجاد نمی­کند.)
شکل ۳-۱: سیگنال­های دریافتی در کانال مرجع و مراقبت در رادار پسیو
سیگنال­های تداخلی در کانال مراقبت در نگاهی ساده نمونه تأخیر یافته از سیگنال کانال مرجع با داپلر صفر هستند. از آن­جایی که این سیگنال­های مزاحم معمولاً توان بیش­تری نسبت به سیگنال اهداف دارند حضور آن­ها در کانال مراقبت مانع از آشکار­سازی صحیح اهداف می­ شود. سیگنال مسیر مستقیم معمولاً بسیار قوی بوده و عملاً در حضور این سیگنال آشکار­سازی هیچ هدفی امکان­ پذیر نخواهد بود و تمام اهداف زیر سطح سایدلوب­های سیگنال مسیرمستقیم مدفون می­شوند، سیگنال­های ناشی از کلاتر نیز می­توانند به اشتباه به عنوان سیگنال هدف شناسایی شده و باعث رخداد هشدارکاذب[۴۶] در آشکارسازی شوند، بنابراین حذف یا تضعیف سیگنال­های تداخل تا سطح نویز در رادارهای پسیو برای آشکارسازی صحیح اهداف اجتناب ناپذیر به نظر می­رسد. در حالت کلی برای حذف یا تضعیف سیگنال مسیرمستقیم یا سیگنال چندمسیرگی می­توان از یکی از روش­های زیر استفاده کرد [۱۶-۱۷-۳۴-۳۵]:
روش­های مبتنی بر الگوریتم Clean
روش­های مبتنی بر نول­گذاری در گیرنده کانال مراقبت
روش­های وفقی
هر کدام از روش­های فوق معایب و مزایای خود را دارند.
در ادامه به معرفی و بررسی روش­های پرکاربرد وفقی برای حذف سیگنال­های مزاحم در کانال مراقبت می­پردازیم.
۳-۲- جایگاه و عملکرد فیلترهای وفقی در رادارهای پسیو
در مسیر پردازش یک سیگنال، در تلاش برای بدست آوردن یک سیگنال مطلوب و عاری از هرگونه اختلال برای انجام آشکارسازی صحیح هستیم. به کار بردن فیلتر در مسیر پردازش، این امکان را به ما می­دهد که از سیگنال ورودی آغشته به اختلال به یک سیگنال مطلوب و عاری از اختلال دست یابیم. هرگاه سیگنال تداخل و سیگنال مطلوب از نظر فرکانسی به خوبی قابل تفکیک باشند، می­ توان از فیلترهایی نظیر فیلتر پایین­گذر یا بالاگذر استفاده نمود و در خروجی سیگنال مطلوب را بدست آورد. در اکثر مواقع سیگنال تداخل و سیگنال مطلوب از نظر فرکانسی قابل تفکیک نبوده و یا در مواردی دقیقاً در یک باند فرکانسی قرار دارند، در این موارد برای جداسازی سیگنال­ها باید از ویژگی­های آماری این سیگنال­ها کمک گرفت که این روند به نحوی به اصول فیلترهای وفقی باز می­گردد. برای پیاده­سازی فیلترهای وفقی ساختارهای متفاوتی وجود دارد که یکی از این ساختارها با نام ترکیب کننده خطی وفقی شناخته می­ شود. در شکل ۳-۲ دو فرم از این ساختار نشان داده شده است. در ساختار اول، ورودی­ ها به طور هم­زمان از چند منبع سیگنال متفاوت دریافت می­شوند اما در ساختار دوم که با نام فیلتر Transversal شناخته می­ شود ورودی­ ها به صورت چند نمونه پشت سرهم از یک منبع سگینال یکسان دریافت می­شوند. شکل ۳-۳ کمک به درک بهتر چگونگی عملکرد فیلترهای وفقی می­ کند. در این شکل ساختار Transversal از یک فیلتر وفقی نشان داده شده است که در آن وزن­ها با یک مکانیزم وفقی تنظیم و به روز می­شوند. در واقع منظور از طراحی فیلترهای وفقی انتخاب و تنظیم ضرایب به نحوی است که به یک تخمین مناسب از سیگنال مطلوب در خروجی فیلتر دست یابیم و تفاوت در روش­های مختلف وفقی به همین مکانیزم کنترل و به روزرسانی وزن­ها باز می­گردد [۳۶-۳۷-۳۸-۳۹].

شکل ۳-۲-الف: ترکیب کننده خطی وفقی

شکل۳-۲-ب: ساختار فیلتر Transversal
شکل ۳-۳: ساختار فیلتر Transversal در رادار پسیو
در بحث فیلترهای وفقی از فیلترهایی با طول محدود[۴۷] و پایداری ذاتی استفاده می­ شود. همان طور که بیان شد طراحی فیلتر وفقی به معنای انتخاب ضرایب فیلتر به نحوی است که تخمین مناسبی از سیگنال مطلوب در خروجی فیلتر بدست آید. در روش­های وفقی انتخاب مناسب ضرایب فیلتر بر اساس کمینه کردن یک تابع هزینه صورت می­گیرد که این تابع هزینه بسته به نوع سیگنال­ها به صورت قطعی یا تصادفی تعریف می­ شود. در حالتی که سیگنال­های ورودی قطعی فرض می­شوند تابع هزینه یک تابع غیر آماری تعریف می­ شود که یکی از رایج­ترین این توابع، جمع وزن­دار مربع خطا می­باشد، حل چنین توابع هزینه­ای منجر به اعمال فیلترهای وفقی به روش RLS[48] می­ شود. در حالتی که سیگنال­ها به صورت تصادفی فرض می­شوند تابع هزینه رفتاری آماری داشته و به صورت متوسط آماری مربع خطا تعریف می­ شود، در این حالت هرگاه سیگنال­های ورودی ایستان باشند کمینه کردن تابع هزینه منجر به اعمال فیلتر وینر می­گردد. فیلترهای وینر غیرعملی بوده به همین دلیل از فرم­های عملی آن مانند LMS[49]، NLMS[50]، VSLMS[51] وVSNLMS[52] استفاده می­ شود [۳۶-۴۰-۴۱].
پیش از آن که به معرفی جزییات روش­های وفقی بپردازیم جایگاه فیلترهای وفقی در رادارهای پسیو برای حذف تداخل، ورودی و خروجی این فیلترها و سیگنال مطلوب و سیگنال خطا را معرفی می­کنیم. ساختار کلی این فیلترها در رادارهای پسیو به صورت شکل ۳-۴ می­باشد [۳۸]. با توجه به مفاهیم فیلتر وفقی، سیگنال ورودی فیلتر، سیگنال خروجی فیلتر، سیگنال مطلوب و سیگنال خطا به ترتیب برابر با xi[n]، xo[n]، xd[n] و xe[n] می­باشد.

شکل ۳-۴: ساختار وفقی در رادار پسیو
در ساختار فوق، فیلتر وفقی تابع مابین سیگنال­های تداخل در کانال مراقبت و سیگنال­های پردازش شده در کانال مرجع را تقریب می­زند. هر چه همبستگی سیگنال تداخل در کانال مراقبت و سیگنال پردازش شده در کانال مرجع بیش­تر باشد فیلتر وفقی عملکرد مناسب­تری داشته و می ­تواند سیگنال­های تداخل کانال مراقبت را به صورت بهتری در خروجی خود دنبال کند. ممکن است تفاوت بین سیگنال­های تداخل کانال مراقبت و سیگنال پردازش شده کانال مرجع تنها در تأخیر باشد، در این حالت اگر مقدار این تأخیر کم­تر از طول فیلتر وفقی باشد فیلتر توانایی دنبال کردن سیگنال تداخل را در خروجی خود به خوبی خواهد داشت. حال اگر علاوه بر تأخیر، تفاوت در داپلر نیز بین سیگنال تداخل و سیگنال پردازش شده وجود داشته باشد میزان همبستگی بین این سیگنال­ها بسته به میزان داپلر کاهش یافته و این امکان وجود دارد که فیلتر وفقی نتواند تداخل را در خروجی خود به خوبی دنبال کند. حال باید به این نکته توجه داشت که از آن­جایی که اهداف دارای داپلرهای نسبتاً بزرگ و یا تأخیر بیش­تر از طول فیلتر وفقی هستند، فیلتر وفقی توانایی حذف آن­ها را در خروجی خود ندارد و لذا با بهره گرفتن از این فیلترها پس از حذف تداخل، اهداف به صورت صحیحی آشکارسازی می­شوند. نکته دیگر قابل توجه این است که ذات سیگنال کانال مرجع خود نیز می ­تواند عاملی موثر بر عملکرد فیلتر وفقی باشد چرا که در رادراهای پسیو سیگنال­های مطلوب و سیگنال­های تداخلی همگی از جنس سیگنال مرجع هستند.
حال به معرفی و بررسی جزییات روش­های متفاوت وفقی می­پردازیم[۳۶-۳۷].
۳-۳- معرفی روش­های وفقی حذف تداخل
۳-۳-۱- فیلتر وینر
در ابتدا به نحوه طراحی فیلترهای وینر می­پردازیم زیرا درک مفهوم فیلتر وینر کمک بسیاری به درک مفاهیم در فیلترهای وفقی می­ کند. در بحث فیلتر وینر سیگنال­ها به صورت تصادفی فرض شده و تابع هزینه به صورت زیر تعریف می­ شود:

منظور از  همان متوسط­گیری آماری است. در واقع در این روش با کمینه کردن تابع هزینه که به صورت فوق تعریف می­ شود ضرایب بهینه فیلتر نتیجه می­ شود. هرگاه طول فیلتر وفقی با طولی برابر L و با ساختار عرضی مطابق شکل ۳-۲ در نظر گرفته شود، می­توان بردار ضرایب و ورودی فیلتر را بنابر شکل ۳-۳ به صورت زیر تعریف کرد:

با توجه به روابط فوق خروجی فیلتر به صورت زیر تعریف خواهد شد:

در نتیجه سیگنال خطا و تابع هزینه به صورت زیر قابل استخراج هستند:

که در رابطه فوق داریم:

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...